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An invest igat ion is made of two-dimens iona l  s teady flow of a viscous  incompress ib l e  fluid 
in the vicini ty of the stagnation point of an infinite step,  in flow of a subsonic f ree  jet .  The 
veloci ty prof i le  of the undis turbed flow fa r  f r o m  the step takes the fo rm of a power  s e r i e s  
ia the coordinate  along the s tep su r face .  Resul t s  of numer ica l  solution a r e  p resen ted .  

Statement  of the P r o b l e m  and Bas ic  Equat ions.  In the coordinate  s y s t e m  XOY, where  X is  d i rec ted  
along the obs tac le  and Y norma l  to it, an incident s t r e a m  is bounded by the two-dimensional  obstacle  Y = 0 
with a stagnation point X = Y = 0. To analyze the flow at  any other  stagnation point we use  the continuity 
equation and the N a v i e r - S t o k e s  equation in the f o r m  of the vor t ic i ty  t r a n s p o r t  equation [1]: 
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where  fl is  the veloci ty  gradient  at  the stagnation point; v is  the coeff icient  of k inemat ic  v iscos i ty ;  and 
VX, Vy,  ~(X, Y) a r e  the veloci ty components  in the vor tex  at  the physica l  coordinates  X and Y. 

We choose the following c h a r a c t e r i s t i c  zones in the flow field nea r  the obstacle:  

1) the undis turbed flow whose veloci ty  v is known and given by a power  s e r i e s  containing only even 
powers  of x: 

v = -  ~] (--t)"a2,,x 2", (3) 
n = O  

where a2n a re  given coeff icients  de te rmin ing  the undis turbed flow of the f ree  jet; 

2) the inviscid zone of in te rac t ion  of the flow with the obstacle ,  where  the veloci ty  component  vy 
va r i e s  l inear ly  with the coordinate  y: 

vy~ = - -  ' ~  (--  l)~a2,,x2"y; (4) 
n = O  

3) the v iscous  wall  l aye r  at the obstacle ,  where ,  in analogy with the s e r i e s  (4), we take for  Vy the 
expansion: 

v,, = - -  ~ (-- 1)'%,,x2"/2,,. (5) 
n = O  
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where  r w = rw(X)//a3, t* = o r .  
wri t ten as: 

Using Eq. (5), we obtain the following expression for v x from Eq. (1): 

v~ = (-- 1)" 2n + 1 
n ~ O  

The vortieity w and the tangential s tress  at the wail ~w are determined by the following power ser ies  in x: 

o ~ -  ~ ]  (--1)"a'"x~"-x ( "  2 n +  f~" 1 x"---2nf2~),  (7) 
t l ~ O  

ov 

a2,, x2. ,_ f~,~, 
�9 % = (-- 1)" 2n + 1 (8) 

n----A) 

Taking account of Eqs. (5)-(7), the vorticity transport equation (2) can be 

. .  2n-3 [ ~  fiv_,4nx._[.2. L 4 n ( 2 n - - l ) ( n - -  1)[~.) ( - -  l) a2,~x 
2 ~  ' " ~ �9 

n ~ O  

-i- (--1)n+k a2,~a~7~ ('+~-3 x 2 - -" 
- ff~22] 2n -1- 1 

n , ! , ~  

.r-2k ,,f2~ 2n-?- 1 r~,,f2~ = O. (9) 

By equating coeff icients  of the same  powers  of  x, we obtain f rom Eq. (9) a sy s t em of different ia l  
equations to de te rmine  the functions fm which depend only on y.  The number  of equations is  de te rmined  
by the number  of t e r m s  evaluated in the above s e r i e s .  It is  c l ea r  that as one moves  away f rom the s tagna-  
tion point the number  of t e r m s  should be inc reased .  A numer ica l  expe r imen t  shows that in analyzing the 
flow nea r  the stagnation point 4 t e r m s  of the s e r i e s  is  sufficient f o r  a s a t i s f ac to ry  solut ion.  F o r  n - 3 the 
s y s t e m  has the f o r m  

aJ~ v --  a~fof~ - -  a2o fo [o--  2aoa-Jof~ + 2aoa~fof~ - -  4a._f~ + 24ad, = O, 

aj~v  + aoaJof; - 3aoado f ; - a o a d o  f'~ - 4a~f..f; + 3aoaJo"f2 

+ 36aoaJ~: 4 - 12aoaJJ ~ - 24aj,] § 360aJ, = 0,' 

aJ~ v -? aoaJof'4" - -  5aoado f'~ - -  aoado fi - -  18azag,/r 

+ lOa2aj'2f 4 + 5aoaJo"f, + ~ -  a~f,f; 
5 

- -  30ao%fof ~ + 15OaoaJ~/n - 6 0 a J ~  = O, (10) 

aJ~ v + aoaJofe - -  7ao%f'o f'6 - -  aoaJ; ['6 - -  40a2aJd'6 

+ 7ao%fg'f, + 56a2aJ~f . -  --g- . 

7 a.aJ', f; + ~ a~a4f;h 7 a~ag; f'4 = O. 
3 " - 5 

F o r  solution of this s y s t e m  the boundary conditions to be used  are :  

y = o ,  /~_. = f~. = o, 

y--~ oo, /r = 1, f~n = 0 (13. = O, l ,  2, 3). (1 ' ] )  

Numer ica l  Solution. The s y s t e m  of equations (10), with boundary conditions (11), was solved n u m e r i -  
cal ly on the BI~SM-4 compute r  by the method of success ive  approximat ions .  Integrat ion was p e r f o r m e d  by 
the Runge-Kut ta  method with accu racy  to 10 -5. It should be noted that the zero th  approximat ion gives the 
wel!-known Himenitz  solution [1] for  two-dimensional  flow nea r  a stagnation point.  In subsequent approx i -  
mat ions  the values  of the functions de te rmined  f r o m  the p rev ious  approx imat ions  a r e  taken as  constants  at  
each step of integrat ion.  The la t te r  a ssumpt ion  does not affect  the convergence  p r o c e s s ,  as  was ver i f ied  
by doubling the in tegrat ion step s ize .  The sea rch  fo r  the unknown conditions a t  the wall,  i . e . ,  f"(0) and 
f'" (0), was p e r f o r m e d  by Newton' s method.  The functions If' (co)-1 ] and f" (~) were  expanding in Tay lo r  
s e r i e s  in the vicinity of the roots  f" (0) and f'" (0) using approx imate  values  in the Tay lo r  s e r i e s  for  the pa r t i a l  
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Fig. 1. Results of calculation of functions f2n and fin (a): plot of I) 
f0; 2) f2; 3) f4; 4) f6; 5) f~; 6) f~; 7) f~; 8) f~,and f2'n and f~'~ (b): 
p l o t o f l )  f~; 2) f~; 3) f~; 4) f6'; 5) f~'; 6) f2"; 7) f~'; S) f~". 

T A B L E  1. Resu l t s  of Solution of Eq. ( 1 0 )  

n 0 1 2 3 

f~.(0) 

f~. (0) 

1,2326 

--1 

2,8155 

--4,0041 

2,7652 

--6,149:3 

7,7502 

--18.364 

de r i va t i ve s ,  obtained by po lynomia l  in te rpo la t ion  f r o m  
the G r e g o r y - N e w t o n  fo rmula  [2], a l lowing fo r  d i f f e r -  
ences  to four th  o r d e r .  The s y s t e m  of a lgeb ra i c  equa-  
t ions in f"(0) and f'"(0) thus obtained was  so lved  by an 
i t e ra t ive  method .  F o r  the f i r s t  in tegra t ion  the va lues  
of f"(0) and f'"(0) were  a s s i g n e d  a r b i t r a r i l y  f r o m  the 
expec ted  r ange  of the exac t  va lues .  

The ve loc i ty  p rof i l e  V of the unpe r t u rbed  je t  flow was  taken,  f r o m  the expe r imen t a l  data of  [3], in the 
f o r m  

-V-V = e k ( @ ) - ~ ,  (12) 
Vm 

where  k '=  0.69; V m is  the m a x i m u m  value of the unpe r tu rbed  flow at  X = 0; X0. 5 is the d i s tance  of the 
obs tac le ,  where  V = 0.5 Vm. In the reg ion  of  i n t e rac t ion  of the je t  with the obs tac le  a l inear  law was  used  
fo r  the va r i a t ion  of n o r m a l  ve loc i ty  componen t ,  i . e . ,  

where  Y~ is  the d i s tance  f r o m  the obs t ac l e  to the boundary  of the in t e rac t ion  region ,  where  Eq. (12) is  
val id.  

In t roduc ing  the ve loc i ty  g rad ien t  at  the s tagnat ion  point/~ = Vm/V~o, the r e su l t i ng  e x p r e s s i o n  can be 
wr i t t en  in d i m e n s i o n l e s s  f o r m  as  

C o m p a r i n g  Eqs .  (13) and (4), we obtain 

_~( x /2 
U g h - -  - -  tJe , Xo, 5 ,I . 

e ~ ~0,5 J = ~  (-- i )2%.x% 
n ~ 0  

whence it fol lows that  a 0 = 1, a 2 = k/x20.5, a 4 = k2/2x4.5 , a 6 = ke/6x6 5 , e tc .  

F r o m  the data  in [3] f o r  Xo.5, the exi t  sec t ion  in the s e r i e s  coef f i c i en t s ,  we can  obtain  

(13) 

R 
Xo. ~ == ---~ -f-0.0848Y, 

2 

where  B a is the width of the nozzle  exit  sec t ion ;  Y is  the d i s tance  f r o m  the nozzle  exi t  to  the sec t ion  c o n -  
s ide red ,  c o r r e s p o n d i n g  to the boundary  of  the j e t - s t e p i n t e r a c t i o n  reg ion ,  and Y = Y 0 - Y ~ ,  where  Y0 is the 
d i s t ance  of the obs tac le  f r o m  the nozzle  exi t .  
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Fig. 2. Distribution of longitudinal velocity and component over  the 
obstacle.  

Fig.  3. Distribution of fr ict ion coefficient over  the obstacle: 1, 2, 3) 
calculation of cf using 2, 3, and 4 t e rms  of the ser ies ,  respect ively 
(the broken line is the calculation for uniform flow). 

The calculation was ca r r i ed  out for the following specific data: Va = 8 m / s e c ,  Ba = 0.1 m, distance 
f rom the nozzle exit to the obstacle Y0 = 8Ba, v = 1 .5 .10  -s m2/sec.  The velocity gradient at the stagnation 
point fl = Vm/V ~ can be determined by solving the problem of inviscid interaction of the jet and the obstacle 

�9 or  can be evaluated f rom experimental  data. In this analysis  we used the approximation [4]: 

9V~ 

(yot'28o 
For  the given value of fl, using the known dependence for the velocity distribution along the axis of 

a f ree  jet V m [5], one c a n e a s i l y  determine Y~o and, therefore ,  the value of X0, s appearing in the se r ies  
coefficients.  However, calculations show that for the free section of the jet one can assume that Y ~ Y0 
in determining X0.5, with a "sufficient accuracy .  

The resul ts  of the solution of the sys tem (10) are  shown in Fig. la ,  b and in Table 1. F r o m  the r e -  
sults velocity profi les  along the obstacle have been constructed for a ser ies  of values of x (Fig. 2), and the 
distributiou of the fr ict ion coefficient at the wall cf = 2Tw(X)/PVa 2 has been given as a function of Re 6"* 
= V x 6 6 * * / v ,  calculated in t e rms  of the momentum loss thickness 6** (Fig. 3). Figure 3 also shows for 
comparison calculated frict ion values for  flow of a uniform s t ream over an obstacle; cf was calculated for 
a jet with success ively  2, 3, and 4 t e rms  of the ser ies  in Eq. (12). 

It follows f rom the data presented that the effect of a nonuniformity of the flow ou the flow field near  
the obstacle begins to be seen at very small  distances f rom the stagnation point. 

X 
Y 
Ba 

Y0 
V X and Vy 
Va 
~2 

T w 

cf 

y 

ct 

N O T A T I O N  

is the coordiuate along the obstacle;  
is the direction normal  to the obstacle;  
is the width of the nozzle exit section; 
is the distance from the nozzle exit to the obstacle;  
a re  the velocity components along the X and Y axes, respect ively;  
is the velocity at the nozzle exit section; 
is the degree of vort ici ty;  
is the frict ion s t ress ;  
is the coefficient of friction; 
is the velocity gradient in the vicinity of the stagnation points; 
is the kinematic viscosi ty;  
is the experimental  constant.  

S u b s c r i p t s  

w at the obstacle;  
m along the jet axis;  
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a at  the nozzle exit  section; 
5 at the outer  edge of the wall l ayer .  

1. 

2. 
3. 
4. 

5. 
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